

Modelling the role of grammatical functions in language processing

Aims

Overall: Develop a cognitive parsing model based on LFG using grammatical functions (GFs) for memory structure and retrieval cues.

This project: Test a model that uses only base ACT-R 7 resources against experimental data from Grodner and Gibson (2005).

Lexical Functional Grammar

In LFG (Dalrymple, 2001) syntax distinguishes • c-structure: word class, phrase structure • f-structure: semantic content, GF GFs are seen as language universals; meaning is derived from f-structure.

For English, word order determines GF. In the model:

- c-structure rules are encoded in productions
- c-structure as read does not persist
- grammar chunks record f-structure
- word order is not recoverable from DM

References

Dalrymple, M. (2001). Lexical Functional Grammar. Academic Press, San Diego. Grodner, D. and Gibson, E. (2005). Consequences of the serial nature of linguistic input for sentenial complexity. *Cognitive science*, 29(2):261-290. Lewis, R. L. and Vasishth, S. (2005). An activation-based model of sentence processing as skilled memory retrieval. *Cognitive Science*, 29:375-419.

stephen.jones@ling-phil.ox.ac.uk

Faculty of Linguistics, Philology and Phonetics, University of Oxford

Assumptions			
 GF prediction order: SUBJ < PRED < OBJ < OBL < ADJ Lexical info trumps predicted GF Try to close long-distance dependencies (LDDs) whenever possible Repair and reopen LDDs if trial fails 	 Grammar chunk info: type parent attachment f-structure attribute- value pairs coreference of LDDs 	CHUNK ID TYPE PRED FEATURES IDD HOST ID HOST GF child GFs, child GFs, cg, subj/	e.g. F7 e.g. N/P/V semantic info e.g. DEF + n/poss/y/II ID e.g. OBJ nil/n/ poss/reqd/ child ID
 <i>Differences to L&V (2005):</i> <i>No</i> extra cognitive resources for parsing <i>Functional</i> structure recoverable Constituent structure <i>not</i> built <i>All</i> chunk creation has a time cost New chunks may be released <i>unattached</i> 	 Goal chunk info: parse state predicted GF embedding and LDD states (max. depth 2) LDD type 	GOALSTATE TARGETGF EMBED 1 EMBED 2 LDDOPEN 1 LDDTYPE 1 LDDOPEN 2 LDDTYPE 2	e.g. attach- e.g. subj/ob n/y n/y n/poss/y e.g. N/P/V n/poss/y e.g. N/P/V

Model parsing cycle and recoverable syntactic structure

Stephen Jones

GFs can parse sentences with embedded verbs using only the resources of base ACT-R 7. Improving fit with experimental timing data requires additional buffer capacity, more complex productions, or both.

Results

Three processing asymmetries are relevant. Experimental reference data from Grodner and Gibson (2005) Experiment 1.

• SRC-ORC at the embedded verb: model qualitatively matches data.

SRC-ORC at the matrix verb: model qualitatively matches data.

• Matrix-embedded verb in SRC sentence: model asymmetry qualitatively *against* data.

Discussion

• Model successfully parses SRCs and ORCs. • Production path length varies by word. • Main determiner of time variation is no. of attachment productions required (0-6). • Productions are smallest possible steps, could combine to streamline.

• Reducing path variation by only attaching upward needs more IMAGINAL capacity. • Simultaneous attachment to parent and children needs more RETRIEVAL capacity.

Conclusions